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A Numerical Method for Two Phase 
Flow with an Unstable Interface 
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AND 
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Courant Institute, New York University, New York, New York I0012 

The random choice method is used to compute the oil-water interface for two dimensional 
porous media equations. The equations used are a pair of coupled equations: the (elliptic) 
pressure equation and the (hyperbolic) saturation equation. The equations do not include the 
dispersive capillary pressure term and the computation does not introduce numerical diffusion. 
The method resolves saturation discontinuities sharply. The main conclusion of this paper is 
that the random choice is a correct numerical procedure for this problem even in the highly 
fingered case. Two methods of inducing fingers are considered: deterministically, through 
choice of Cauchy data and heterogeneity, through maximizing the randomness of, the random 
choice method. 

1. INTRODUCTION 

The equations of two phase immiscible flow in porous media have the form 

g + v * (v!(s)) = 0, (l-1) 

v = -k(s) Vp, (l-2) 

v*v=o, (1.3) 

neglecting the dispersive, or parabolic term associated with capillary pressure. Here s 
denotes the saturation (fraction of water in total fluid) and p is pressure. Also k and f 

* Supported in part by NSF Grant PHY-78-08066. 
‘Supported in part by the Army Research Office, AR0 Grant DAAG29-78-G-0171. 
$ Supported in part by NSF Grant DMR 77-04 105. 
8 Permanent address: Mathematics Department, Cornell University, Ithaca, N.Y. 
II Permanent address: Mathematics Department, Pontiticia Universidade Catolica do Rio de Janeiro, 

Rio de Janeiro, Brazil. 
# Supported in part by the Department of Energy, Grant EY-76-C-02-3077. 

179 
0021.9991/81/010179-22$02.00/O 

Copyright C 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



180 GLIMM, MARCHESIN, AND MC BRYAN 

are known functions of saturation (and perhaps position), which describe the 
permeability and porosity of the reservoir and the viscosities of the two incom- 
pressible phases flowing in it. We use the functions 

k(s) = s* + (1 - s>*/,D, (1.4) 

f(s) = s*/w, (l-5) 

where ~1 is the viscosity ratio for the fluids in question. In order to eliminate 
geometrical effects from the study of viscous fingering, we have chosen as a model 
geometry a rectangle 0 < x <X, 0 < y < Y, and with the boundary conditions 

s(x, y = 0, t) = so(x), 

cY,p(x = 0, y, t) = i?,p(x = x, y, t) = 0, (l-6) 

p(x,y=O,f)=O, p(x, y = Y, t) = -vY. 

This problem is intrisically one dimensional. Except for fingering instabilities (the 
central point of this paper) the solutions would be one dimensional also. Elsewhere 
we present calculations in which the underlying flow is intrinsically two dimensional 
[ 10, 191. 

We have fixed v = 1 throughout this paper. This is no loss of generality because 
change of v is equivalent to change of time scale. In most cases we have chosen 
so(x) = 1. This corresponds to a situation where water is injected at one edge 0, = 0) 
of the rectangle and fluid is removed at the opposite edge in such a way that a fixed 
pressure difference is maintained. Initial data are also specified, usually s = 0 at 
interior points. 

Problem (1.1~(1.6) is scale invariant. This means that for any a > 0, 

s’(x, t) = s(ux, at), 

p’(x, t) = Q - ‘p(ax, at), 
(1.7) 

solves (l.l)-(1.6) in the rectangle O<x<X’=a-‘X, O<y< Y’=a-‘Y if s,p 
solves (l.l)-(1.6) in [0,X] x [0, Y]. 

The porosity and absolute permeability (assuming for the moment that they have 
no spatial variations) scale out of Eqs. (l.l)-(1.3) (see (1.7)) and thus these factors 
have been set to one for convenience. In general, reservoirs are not spatially 
homogeneous, and in this sense Eqs. (l.l)-( 1.3) do not correctly model all of their 
important properties. In some cases, information concerning the long distance 
variation, or trend, is known from geological data. This type of heterogeneity is most 
important in realistic field applications. Here and in [9, lo] we consider problems in 
which such trends do not occur. 

Geological information concerning horizontal variation on distances between one 
quarter of a mile-the typical well spacing-and six inches-a core diameter-is not 
abundant, but it seems to be widely assumed that significant variation occurs on all 
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intermediate length scales. Furthermore, the variation continues on all length scales 
down to the smallest pore size. We have chosen in [9, lo] a numerical procedure 
consistent with this picture of a reservoir which is heterogeneous on small length 
scales (i.e., on the order of a mesh spacing). 

The present paper, in addition to showing sample heterogeneous calculations, in 
both the stable and unstable cases, validates the correct propagation of these fingers 
by the use of totally deterministic calculations. 

Because there are many significant length scales in the problem, including those 
well below the level of our mesh spacing, one may worry about the meaning of the 
computations. However, there is a cutoff on the relevance of short length scale 
heterogeneity effects. This cutoff is provided by capillary pressure effects, and is 
between several inches and several hundred feet, depending on the reservoir, the 
flooding process and the point (x, y) where the question is asked. 

The dispersive effects produced by a capillary pressure term are not included in the 
scale invariant equations (1. 1 )-( 1.3). Thus, when solving these equations numerically 
for finger-like solutions it is meaningless to consider mesh refinement beyond the 
level of the capillary cutoff. In the present computations we imagine that our mesh 
spacing is set at this “mixing zone” length scale. If we were to solve the physical 
problem using finer meshes, a parabolic term should be included in (1 .l), simulating 
the capillary pressure effect. This parabolic term would stabilize the solution, in the 
sense that the smallest lingering instabilities would have the correct size. 

We are interested in determining the oil-water saturation front, for values of p 
corresponding to both stable and unstable (fingering) regimes. Since the detailed 
information concerning the specific x-y dependence of the permeability (and 
porosity) is not contained in (1. l)-( l-3), if the method is to have any relevance to 
engineering reality, the problem must be considered to be stochastic in nature, with 
fluctuations larger than infinitesimal. Thus the solution is stochastic also. Some 
important aspects of the stochastic solution, however, are deterministic, at least as far 
as our tests reveal in [9]. Specifically, the growth rate of fingers, in the unstable case 
appears to be deterministic. 

Since we included in the formulation of the problem the assumption that non- 
infinitesimal deviations from homogeneity are important, we are not attempting to 
model the onset of instability. For the latter purpose, one might include a deter- 
ministic response to a single perturbation, e.g., a sine wave with the lowest nonzero 
frequency determined by the dimensions of the region. Calculations of the onset of 
instability occur in many numerical studies of boundary layers, mixing layers, heat, 
convection, etc. We are concerned with a highly developed instability: the number of 
unstable modes is of the order of the number of mesh intervals in the width of the 
region. Our calculations are thus closer in spirit to the study of fully developed 
turbulence than, say, to the study of the onset of turbulence. We note in passing that 
for the problem of onset of instabilities a linearized analysis is relevant. The latter 
question is discussed in the book of Scheidegger [ 161, where a list of further 
references can be obtained. 

In [9] we computed statistical quantities, and found that these quantities are deter- 
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ministic in the sense that they are independent of mesh refinement, choice of random 
number generator, scale transformation and boundary effects of the rectangular 
domain. 

In the present paper we try to justify the use of our numerical procedure in 
computing stable and unstable (fingered) solutions. 

We show that the method is reasonably well conditioned under mesh refinement. In 
a particular fingered case where an approximate solution can be computed explicitly, 
we show that the numerical procedure yields results accurate within expected error 
bounds. This example is also used to discuss the mechanism responsible for the 
growth of non-infinitesimal fingers. 

We also show that in the stable regime (small values of ,u) the randomness 
introduced in [9] to generate the fingers does not spoil the stability of the solution. In 
other words, fingers do not develop. 

The closely related problem of computing unstable fingering in the case of miscible 
displacement was previously considered by Peaceman and Rachford [ 131. We also 
mention the related problems of salt fingering in the ocean and flame front fingers. 

2. THE NUMERICAL PROCEDURE 

The basic quantities at time t, (n = 0, 1, 2, 3,...) are the velocity (~7, 1,2,j+ i,*} and 
the saturation {s;+ v2,j+ ,,?} computed at the center of mesh blocks, and the pressure 
{ P;,~}, computed at mesh points, (0 < i < N, 0 Q j < M)-see Fig. 1. Note that i 
labels mesh units in the x direction and j labels mesh units in the y direction. 

At time zero, the saturation {sy, yZ, j+ 1,2 } is the given Cauchy data. (We frequently 
use saturation zero everywhere except at the j= 0 row ‘where it is one. This 
corresponds to water starting to seep in from the j = 0 side of the rectangular oil 
reservoir.) 

J=M 

J=o 

P P P P P 

5 ;; ; ; 
x x x X 
s s S S 

P P P P P 

; ; ; ; 
x x X x 
s S S S 

P P P P P 

; ; ; ; 
X X x X 

S S S S 
P P P P P 

r=O I=N 

FIG. 1. The grid: pressure, velocity and saturation. 
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The solution is advanced from time t,,-, to time t, through the following steps: 

(A) Given the saturation {sY;~~,~+ ,,z}, we solve (1.3) approximately obtaining 
i PY,jl* 

(B) The velocity {vi’+ l/z.j+ 112 1 is obtained using a discrete version of (1.2). 
(C) Equation (1.1) is solved approximately for the saturation {S;+ 1/2,j+VZI. 

This procedure is first order in time and space. We describe each of its steps in detail. 

A. The Elliptic Equation 

We are given the saturation (s~+~,~,~+,,~ } and we want to solve approximately the 
elliptic equation (1.3) under the boundary conditions (1.6). 

We introduce a new function 

4(x, Y> = P(XY Y) + VY- 

Equations (1.3) and (1.6) may be rewritten as 

-v. (kv$,+l+, (2.1) 

(2.2a) 

4(x, 0) = $(x, Y) = 0. (2.2b) 

Using standard finite element techniques [17], this problem is reduced to the 
solution of a linear system. We approximate the solution $ by a continuous function, 
piecewise linear in triangles (halves of mesh blocks). We obtain the following system: 

where 

Ai,jQi,j + Bi,jOi+ 1.j + Ci,j#i- l,j + Di,j#i,j+ I + Eij#i,j- 1 = Fi.j 

i = O,..., N; j= l,...,M- 1; (2.3) 

2 2 A, = (1/2)((dx)- + (dy)- )tki+ I/z,j+ v2 + ki+ I/z,j- l/2 + ki- v2,j- L/2 + ki- Ip,jt 1,217 
(2.4a) 

Bij = 41/2Wx)-2(kt+ 1/2,j+ l/2 + ki+ y2,j-d, (2.4b) 

Cij = -tl/2)(~X)-2tki- 1/2,j+ l/2 + ki- 1/2,j- l/2), (2.4~) 

Dij = 41/2WY)-2(ki- ,/2.j+ l/2 + kit ,/2,j+ 1,217 (2.4d) 

Eij = -(1/2)tdy)-2tki-,/2,j- 112 + ki- y2,j-d (2.4e) 

Fi./ = (V/2)(dy)-‘(ki- l/2,./- l/2 - ki- v2,j+ l/2 + ki+ l/2,./- l/2 - ki+ 1/2,jt WI* (2.4f) 

In the formulae above k i+ 1/2,j* l/2 = k(Si, I/z,j+ 112 ) unless the point corresponding to 
i f l/2, j f l/2 falls out of the rectangular domain. In this case ki, ,,2,j* ,,2 should be 
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replaced by zero. Note that for Ax = Ay = 1, and k(s) = 1, the formulae above reduce 
to the usual 4, -1, - 1, -1, -1 coefficients of the Laplacian, except at the left and 
right boundary points, where the coefficients are 3, -1, - 1, -1. 

An accelerated conjugate gradient algorithm was used to solve this system. (See 
Appendix A.) It is a pleasure to thank 0. Widlund for helpful discussions. We remind 
the reader that a preconditioning operator is an approximation of the operator on the 
left hand side of (2.3), which must be symmetric positive definite and easy to invert. 
We experimented with three operators as preconditioning. 

The first operator, which we call G9, is the diagonal part of the left hand side of 
(2.3), namely, 

(@#)ij =ALj+ij* (2.5) 

The second operator is ~112Y~1’2 where Y is the usual approximation to the 
operator -A with appropriate boundary conditions on the mesh in consideration. 
Standard techniques involving fast Fourier transforms were used to apply 9-i to 
vectors in the accelerated conjugate gradient procedure. 

The third operator was 

ca”2(m + q(m + 9-g g”2, P-6) 

where m is a positive member (of order one), and YX and YY are usual approx- 
imations to -a2/ax2 and -a2/ay2 with appropriate boundary conditions. Inverting 
(m + .9J and (m + rt’,) is very cheap because it involves solving tridiagonal systems 
with constant coefficients. Even though the number of iterations needed for 
convergence in the accelerated conjugate gradient was perhaps four of five times 
smaller when using the second preconditioning rather than the third, the latter turned 
out to be the cheapest in our applications. Undoubtedly this is mainly due to the 
simplicity of inverting the third operator. We conjecture that another factor is the 
strongly fingered structure of most of our solutions. They have Fourier modes which 
are concentrated on high frequencies in the x direction and on low frequencies in the 
y direction, justifying the splitting in the third operator. We remark that this precon- 
ditioning is closely related to a splitting method used by Peaceman and Rachford 
[141- 

Typically the iteration in the accelerated conjugate gradient is stopped when the 
residual error is lop3 times smaller than the norm of the solution itself. As an initial 
guess in the procedure, we use the solution at the previous time step. 

B. The Velocity Equation 

The formula used to compute the velocity 

‘l+ llt.it l/2 E (C+ Ij2,j.t 1129 wl+ l/t.j+ 1,219 

is 

G+ lp,j+ 112 = -k(CL&.j+ 1/2)[(PY+ I,j+ 1 -PY,/+ 1) + (P;+ l,j-PF,j)]/2 (2.7) 
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with a similar formula for +v;+~,~,,+,,~. They can be easily derived by integrating the 
velocity v = -k Vp on a mesh block. (We take p as given by its finite element 
approximation.) 

These formulas are satisfactory in the region where the velocity is continuous. The 
normal component of the velocity is still computed accurately at fronts which are 
parallel to the grid. This is so because this component is continuous, as implied by 
Eq. (1.3). On the other hand, the normal component is the only one which affects the 
motion of the front, as can be seen from as/at + v . V’(s) = 0. (This equation is 
obtained by adding (1.1) and (1.3).) 

Finally, we remark that the fronts in our solution are essentially parallel to the 
grid, in one or the other direction. Thus we believe that the formulas for the velocity 
give satisfactory results in the cases where they are used. 

C. The Hyperbolic Equation 

We use the random choice method [7, 21 to advance the solution of the 
Buckley-Leverett equation (1.1) from time I,-, to time t,. This method was first 
used to solve this equation in [ 1,5]. Since it is an intrinsically one dimensional 
method, operator splitting is used, i.e., a time step for the equation 

is replaced by a time step of 

St t $ (w-(s)) = 0, 

(2.8) 

(2.9) 

followed by a time step of 

St t g (udf(s)) = 0. (2.10) 

The boundary conditions (1.6) for (2.8) are replaced by s(x, y = 0, t) = so(x). 
This is an adequate first order procedure for smooth flows [ 181. In general, it tends 

to degrade the resolution of discontinuity fronts which are oblique to the grid [3]. 
However, this problem is substantially reduced in our case, since the velocity field is 
essentially one dimensional (typically the x component of the velocity is between 
lo-* and 10-l the size of the y component). In practice the x component hyperbolic 
timestep, of the operator splitting produces no motion most of the time. Furthermore, 
the fingered solutions we consider in this paper have fronts which are mainly parallel 
to the grid, either in the x or the y direction (see Section 3). For these solutions the 
use of operator splitting is allowed: since only the normal component of the velocity 
is responsible for the motion of the fronts, Eq. (2.8) reduces locally to (2.9) or (2.10). 

The one-step version of the random choice method employed is found in (81. We 
give a brief description of the method for Eq. (2.10). (For each value ofj, Eq. (2.10) 
is a one dimensional problem, so we drop the index j.) At time t,- i, the solution is 
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assumed to be the constant SF;& in the interval idx < x < (i + 1) dx, for i = 
0, 1, 2,..., N - 1. Similarly we define velocities constant in intervals (i - l/2) Ax < x ( 
(i + l/2) Ax, i = 1, 2 ,..., N - 1, by the formula r$’ = (~7~ ,,r + u;+ i,J2. For t,,-, < t < 
t n-1 + At, when a Courant-Friedrichs-Levy type condition At Q 4 Ax(sup, ziy) x 
(sup,f’(s)) is obeyed, the solution is uniquely defined. The factor f results from our 
use of a nonstaggered mesh and allowance for wave motion in either direction. The 
solution is obtained by solving the following Riemann problems (for each i) 

St + g (“‘if(s)) = O7 

s=s!f-’ 
l-1/23 for x<iAx, t=t,-, 

s = sy;;2) for x>iAx, t=t,-, 

;i = (4-L/2 + @+ 1/2)12* 

The solution of the Riemann problem follows [5]. Thus a solution s(x, t) is obtained 
for t,-,<t<t,-,+Atrt,; this solution is not piecewise constant in this time 
interval. To achieve the latter property, we modify s at t = t,. We introduce a 
sequence (0,) of numbers equidistributed in the interval [0, 11. (In this paper we use 
the fractional part of ((n + const.) @.) Finally we define 

s;+ l/2 = $0 t 0,) Ax, t,J, i = 0, 1, 2 ,..., N - 1. 

In this method, each wave in the solution achieves its correct speed statistically (as in 
a random walk) but because adjacent fluid blocks are never averaged or mixed, 
numerical diffusion is completely eliminated. A detailed discussion of this method 
can be found, e.g., in [3,5, II]. 

The averaging formula which defines uy is justified at the fronts if we remember 
that the normal component of the velocity is continuous and that we are mostly 
concerned with fronts which are parallel to the grid. 

In practice the time step used from t,-, to t, was obtained by extrapolation: 
namely computation of a maximum allowed time step from the solution of the 
Riemann problems in the x and y directions at time t,- 2. This maximum allowed 
time step was then reduced by a factor (10 96 in these calculations) to allow for time 
dependence of the maximum allowed time step. For the first time step the hyperbolic 
equation is solved once for a very short time step in order to estimate the correct 
length for the first time step. 

3. RESULTS 

A. The Single Finger: Homogeneous Calculations 

As Cauchy data we use a flat front of water, except for a protruding finger, and we 
follow its development in time. This is done for ,u = 4, when the oil-water front is 
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FIG. 2. Cauchy data for Figs. 3-7: Saturation values. Here 9 represents pure water, i.e., s = 1. The 
zeros (pure oil) are not printed. 

FIG. 3. Pressure level lines and velocity field at time zero. The horizontal velocities are exaggerated 
by a factor of five relative to vertical velocities in all graphs. 

581/39/l-13 
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FIG. 4. Saturation value at time t = 1 on a 30 X 30 grid. 

FIG. 5. Pressure contour lines and velocity field at time t = 1 on a 30 X 30 grid. The saturation 
front is superimposed. 
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FIG. 6. Saturation value at time I = 1 on a 20 X 20 grid. See Fig. 4 for effect of mesh refinement. 

, / / \ 
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FIG. 7. Pressure contour lines and velocity field at time I = 1 on a 20 x 20 grid. See Fig. 5 for effect 
of mesh refinement. Velocity arrows are scaled by length of mesh spacing. 
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FIG. 8. Cauchy data for Figs. 9-15: Saturation values (29 X 30 mesh). 

FIG. 9. Pressure contour lines and velocity field at time zero (29 x 30 mesh). 
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FIG. 10. Saturation values at 1= 1. The apparent loss of resolution (O’s and I’s) of the front on the 
trailing edge above the base of the finger is a physical effect. It is a residue of water left in a region 
where oil displaces water (29 X 30 mesh). 

*,.1* I ,r.*.. iiij.,.,,,.,.... 
*,,.,r*, f... ~ .ff.*.,.,t,* 

I 
* * 711 ’ * * ” ’ * ,,,I, ,....,,, I..,,,,l,r,? 

FIG. 11. Pressure contour lines and velocity field for Fig. 10 (29 x 30 mesh). 
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FIG. 12. Medium mesh (19 X 20) saturation values at time t = 1, compare to Fig. 10. 
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FIG. 13. Pressure contour lines and velocity field for Fig. 12 (19 x 20 mesh). 
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FIG. 14. Coarse mesh (9 X 10) saturation values at time t = 1. Compare to Figs. 10, 12. 

FIG. 15. Pressure contour lines and velocity field for Fig. 14. 
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unstable. (As explained later, this means that fingers tend to form from an initially 
smooth interface). 

In Figs. 2-7, we display the evolution of a thick finger, both for a line (30 x 30) 
grid and medium grid (20 x 20). The numbers O,..., 9 correspond to saturation 
varying from s = 0 (pure oil) to s = 1 (pure water). (Actually the number 0 is not 
printed in the plots.) The front is drawn at height s = 0.01, which tends to make the 
results look worse by accentuating any dispersion. For plotting convenience the 
velocity scales are not the same for different grids. (Actual inspection of the numbers 
shows that the velocities for different grids agree well.) For clarity, the horizontal 
component of the velocity is multiplied by five in all the plots. We have good 
agreement under mesh refinement. 

In Figs. B-15 we display the evolution of a thin finger, for a fine (30 x 30) grid, a 
medium (20 x 20) grid and a coarse (10 X 10) grid. Within the accuracy of the 
scheme, we have good agreement under mesh refinement, particularly as far as the 
length of the finger is concerned. 

B. The Initially Constant Front: Heterogeneous Calculations 

We consider now the situation when s,,(x) = 1 in (1.6). The problem we are solving 
has no x dependence, so its mathematical solution is independent of x and may be 
found by the method of lines. Since V . v = 0 and v = (0, w), w is constant. Using v = 
-k Vp and the boundary condition (1.6) we obtain w = vY/lOy (k(s))-’ a’y. If we let 
r = t/w, the hyperbolic equation becomes s, +f(s), = 0. Typically the solution as a 
function of y has the form shown in Figs. 16 and 17. However, this solution is 
unstable for p sufftciently large, and the solutions of physical interest are those which 

FIGS. 16-17. Saturation and pressure. Solution of the one dimensional flow problem for a typical 
time 1. 
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FIG. 18. Saturation values at t = 2 for full x-y heterogeneous calculation. Initial data were s = 1 for 
y = 0. The viscosity ratio p = 2 is stable and the front is within one mesh spacing of its mean position. 
This variation in the front is due to statistical effects, introduced here numerically. 

FIG. 19. Saturation values at I = 2 in the unstable case, p = 10, for a full x-y heterogeneous 
calculation. The O’s, l’s and 2’s behind the front are partly physical: due to pinching behind a narrow 
finger, the resulting isolated droplet leaves a narrow trail of water. (Initial data were s = 1 for y = 0.) 
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FIG. 20. Pressure contour lines and velocity field for Fig. 19 (20 x 20 grid). 

result from small (x-dependent) perturbations of the data. Here the randomness of the 
random choice method is an advantage, because it can be used to introduce small 
random perturbations into the solution at each time step. In the stable region, 
,u < pcrit, these small perturbations are damped out and do not affect the solution, 
while in the unstable region, p > pCrit, the small perturbations grow to produce lingers 
and occasional isolated phase islands: oil surrounded by water or vice versa. In this 
sense, the random choice method can be thought of as simulating a slightly 
heterogeneous medium. In the present paper, we have no control over the degree of 
heterogeneity except that we choose distinct random number generators for each 
column x = const. in the mesh. This is achieved by choosing the constant in 

f?” E (n + constant) @(mod 1) 

to depend on x. 

FIG. 21. Multiple fingers, velocity field and saturation front. Approximate analytic solution. 
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Figure 18 shows the evolution of the solution computed with independent random 
generators for each x and y column. The viscosity ratio is p = 2, so that we are well 
in the stable regime. (A derivation of the region of stability will be given in the next 
section.) Clearly the lingers introduced by the scheme are small (1 or at most 2 mesh 
spacing long) and have no tendency to grow. Figures 19 and 20 correspond to 
,u = 10, for a 20 x 20 mesh in the unstable regime. Clearly, these lingers grow. Their 
growth was studied statistically in [9]. In that paper, we compute the average 
position of the front and the root mean square deviation of the front position from its 
average, both as functions of time. The results proved to be independent of mesh 
refinement and other factors. 

We remark that the resolution at the edge of the front is nearly perfect. In Fig. 18, 
the resolution of the front is seen from the sharp discontinuity in s, from values at 
least 0.5 to the value s = 0. In Fig. 19, the jump is from values at least 0.3 to s = 0. 
See the figure legend for further discussion. Note the tendency of the velocity to avoid 
the trench-i.e., inverse or oil finger, and to expand at the tip of the water finger. In 
the stable case these tendencies are reversed. 

C. The Multiple Fingered Solution: Homogeneous Calculations 

In order to understand how multiple fingers are treated by our scheme, we consider 
a solution which has lingers of equal length and uniform saturation k, on every other 
Y column at time zero (see Fig. 21). We define k, = k(s*) where s* is the saturation 
value given in Fig. 16. This value depends only on ~1. Physically this means that 
instead of pure water (which tends to mix-macroscopically-with oil), we pump in 
a mixture of oil and water which has no tendency to mix further with oil. 

We will compute analytically the solution using reasonable approximations, and 
compare it with the numerical solution. We assume that the velocity field is vertical. 
This is inaccurate only near the tips of the fingers. 

In the pure oil region corresponding to mobility k, = k (s = 0), the vertical velocity 
is a constant We for points above the tip of the lingers (at position y), and another 

TABLE I 

Length of Multiple Fingers vs Time 

Time 
Analytic 30 x 30 mesh 
5 fingers 5 fingers 

20 x 20 mesh 20 x 20 mesh 10 x 10 mesh 
10 fingers 5 fingers 5 fingers 

0.00 0.300 0.300 0.30 0.30 0.3 
0.25 0.367 0.333 0.35 0.35 0.3 
0.50 0.434 0.433 0.40 0.40 0.4 
0.75 0.502 0.500 0.50 0.50 0.4 
1.00 0.571 0.566 0.50 0.50 0.5 
1.25 0.641 0.633 0.55 0.55 0.6 
1.50 0.712 0.700 0.65 0.65 0.6 
1.75 0.783 0.766 0.75 0.75 0.6 
2.00 0.856 0.833 0.80 0.80 0.7 
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FIG. 22. Multiple fingers. Saturation values at t = 1 for computed solution. Cauchy data have five 
fingers with finger height y = 0.3. 
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FIG. 23. Pressure contour lines and velocity field for Fig. 22. This figure justifies the assumptions 
used to compute the analytic solution. 
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constant wi between the lingers (see Fig. 21). Inside each finger the uniform velocity 
is w2 and the saturation is k,. 

We introduce the notation (0, E) = E = -VP. Since curl E = 0, a computation of 
the circulation of E in the rectangle S in Fig. 21, yields the equality E, = E,. Since 
w, = k,E,, w2 = k,E, we have wl/wz = k,/k,, that is, the ratio of the ‘velocities 
inside and outside of lingers (side by side in Fig. 21) is the mobility ratio. A 
discussion of related but distinct definitions of mobility ratio can be found in [4, 161. 
We set M= w1/w2. 

For p = 2, solution of the Riemann problem leads to s2 = s* = 0.577 and M = 
0.845. Similarly for p = 3 we have M= 1.0 and for p = 4 we have M= 1.1056, 
suggesting that p = 2 is stable and ,u = 4 is unstable. 

Since V . v = 0, a flux calculation yields 2w, = wi + w2. Using (1.6) and 
computing the line integral of Vp from 0 to Y we obtain -vY =p(Y) -p(O) = p(Y) - 
p(y) + p(y) -p(O) = -E3( Y - y) - E, y. Now we substitute E,, E, in terms of 
k, , k,, wt and solve for w2. Since the front advances with speed u’y/dt = wJ’(s*), an 
integration yields: 

y = (p - ((p - ayJ2 - 2ayt)“‘)/Cz, 

where a = (k, - k,)/2k,, /3 = Y(k, + k,)/2k,, y = k,vYf(s*) and y, = y(0). 
We compute y(t) for p = 10 and y(0) = 0.3 in a square domain with Y = 1 and 

v= 1. 
In Table I, we show the “exact” y(t) and the y(t) computed for a variety of mesh 

spacings. In view of the first order accuracy of the scheme, the agreement is very 
good. In Figs. 22 and 23 we show the solution at time 1.0. 

APPENDIX: THE ACCELERATED CONJUGATE GRADIENT ALGORITHM 

The problem is to solve iteratively the linear system Mu = c, where the matrix M is 
positive definite and symmetric. The standard conjugate gradient algorithm is the one 
described below, provided we replace N by the identity operator. See [ 121. The 
conjugate gradient algorithm converges faster, the closer M is to the identity matrix. 
In order to derive the accelerated conjugate gradient algorithm we replace the original 
system by (N-1/2i14N-1’2)v = N-“*c, where u = N+‘j2u. Here N is an approximation 
of the matrix M. The preconditioning operator N is assumed to be symmetric and 
positive definite and to have a computationally inexpensive inverse. 

Given uO, an initial guess of the solution, we define r0 = c - Mu,, p,, = N-‘r,, . The 
iterative procedure for k = 0, 1, 2,... is the following: 

ak = @k, N-‘rk)l(~k9 MPk)T 

uk+ 1 = uk + akPk9 

r k+ 1 = rk - ‘k”PkT 
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Pk= +&+*I N- kc+ J/‘(rP-‘fk>, 
P &+I =N-Irk+, +@kPk’ 

This procedure is stopped when (r&, N- ‘rk) has decreased enough, and u& is then 
the approximate solution of MU = c. 
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